If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-18x-9=0
a = 2; b = -18; c = -9;
Δ = b2-4ac
Δ = -182-4·2·(-9)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{11}}{2*2}=\frac{18-6\sqrt{11}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{11}}{2*2}=\frac{18+6\sqrt{11}}{4} $
| 56=7(w−81) | | x+0.06x=6890 | | |x+45|=-5|2x-2|+2 | | x2-18x-9=0 | | 16k+k-8k-2k-2k=7 | | –10+3g=2g | | -1.32e=2.64 | | 3x^2+6=-30 | | 3–y=25 | | d*9=45 | | 11/2=7/12c | | 7√(x)=-21x | | 9n+2=83 | | 10x+4=22+4x | | (2/9)x+7=11 | | r−–1.71/4=3.07 | | 2/x9+7=11 | | 200+11/2x=584-12/5x | | m2+ 3=1 | | (x-3)^2+7=11 | | 363b362b=2162−b | | 15z+z-13z=12 | | 3x-30=2x-15 | | -7k—16k—20k+-20k-18k=9 | | –6x +14=–2(3x –7) | | -15k-3k=-18 | | W(d)=34d+0.5 | | p+3p-4p+p+2p=18 | | 16t+3t-17t-t+t=12 | | x^2+14x+49=-81 | | 2p+3p-4p=3 | | 0.25x+0.1(x+8)=4.3 |